官网 您好,欢迎来到179教育网,我们竭诚为你服务!
179教育网 培训课程
手机版
立即提交
更新时间:2021-09-15 10:43

数学知识点:特征向量及有理数和实数的区别

来源:长春博大教育 时间:2021-09-15 10:43:06 浏览:1796
特征向量从定义出发,Ax=cx,A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。有理数属于实数,有理数包括正整数、0、负整数,又包括正整数和正分数,负整数和负分数。实数包括有理数,实数可以分为有理数和无理数两类,或代数数和超越数两类。
如何求特征向量

从定义出发,Ax=cx,A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。

通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于看清一个矩阵在那些方面能产生最大的效果,并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。

当在计算中微子振荡概率时发现,特征向量和特征值的几何本质,其实就是空间矢量的旋转和缩放。而中微子的三个(电子,μ子,τ子),就相当于空间中的三个向量之间的变换。

用户只需要列一个简单的方程式,特征向量便可迎刃而解。公式表示只需要通过删除原始矩阵的行和列,创建子矩阵。再将子矩阵和原始矩阵的特征值组合在一起,就可以计算原始矩阵的特征向量。

传统的求解特征向量思路,是通过计算特征多项式,然后去求解特征值,再求解齐次线性方程组,最终得出特征向量。

有理数和实数的区别

性质不同、所属不同。有理数属于实数,有理数包括正整数、0、负整数,又包括正整数和正分数,负整数和负分数。实数包括有理数,实数可以分为有理数和无理数两类,或代数数和超越数两类。

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

有理数加法运算:同号两数相加,取与加数相同的符号,并把绝对值相加。异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0。一个数同0相加仍得这个数。互为相反数的两个数,可以先相加。符号相同的数可以先相加。分母相同的数可以先相加。几个数相加能得整数的可以先相加。

立即提交
课程顾问-焦老师 已帮助985人找到培训课程 客户满意度:5